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SUMMARY

Most existing meshing algorithms for a 2D or shell �gure requires the �gure to have exactly four sides.
Generating structured grids in the n-sided parametric region of a trimmed surface thus usually requires to
�rst partition the region into four-sided sub-regions. We address the automatic structured grid generation
problem in an n-sided region by �tting a planar Gregory patch so that the partition requirement is
naturally avoided. However, self-overlapping may occur in some portions of the algebraically generated
grid; this severely limits its usage in most of engineering and scienti�c applications where a grid system
with no self-intersecting is strictly required. To solve the problem, we use a functional optimization
approach to move grid nodes in the u−v domain of the trimmed surface to eliminate the self-overlapping.
The derivatives of a Gregory patch, which are extremely di�cult to compute analytically, are not
required in our method. Thus, our optimization algorithm compares favourably at least in terms of
speed with some other mesh optimization algorithms, such as the elliptic PDE method. In addition, to
overcome the di�culty of guessing a good initial position of every grid node for the conjugate gradient
method, a progressive optimization algorithm is incorporated in our optimization. Experiment results
are given to illustrate the usefulness and e�ectiveness of the presented method. Copyright ? 2004 John
Wiley & Sons, Ltd.

KEY WORDS: self-overlapping; structured grid; quadrilateral grid; Gregory patch; n-sided; trimmed
surface

1. INTRODUCTION

In computer-aided engineering, geometric modelling, computer graphics, and many other ap-
plications, trimmed parametric surfaces are widely adopted [1]. After a parametric surface
S intersects with other surfaces, only a portion of the surface patch is used in de�ning a
meaningful shape, which is called a trimmed (parametric) surface ST. ST is constrained by the
same mathematical surface equation as S(u; v), but its parametric domain is only a portion of
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(a) (b)

Figure 1. A trimmed n-sided surface and its parametric area: (a) an example surface;
(b) the parametric area in u− v domain.

that of S. The parametric area of ST, to be denoted as PST , lies inside (u; v)∈ [0; 1]× [0; 1]
(assuming the u− v domain of S is normalized) and is bounded by a number of curves (see
Figure 1). Each boundary curve of PST is expressed as a parametric equation of the form
bi=[ui(t) vi(t)], where t ∈ [0; 1]. Formally, a trimmed n-sided surface patch is de�ned below.
De�nition 1.1
A trimmed parametric surface ST, whose n boundary curves form a Jordan curve in its para-
metric area PST , is de�ned as a trimmed n-sided (parametric) surface patch.

An example of a trimmed n-sided patch and its parametric area is given in Figure 1. The task
of approximating a trimmed surface by a complex of simple planar elements (either triangular
or quadrilateral) plays an important role in engineering computing; this is referred to as the
surface meshing operation, which has been studied for many years [2–16]. The two most
powerful analysis tools in engineering are the �nite element methods and the �nite di�erence
methods. The �nite element method usually adopts either triangular grids or quadrilateral grids,
and the grids can be structured or unstructured. However, the �nite di�erence method generally
uses structured quadrilateral grids (or simply called structured grids). The structured grids
can be generated algebraically or as the solution of partial deferential equations (PDEs).
Surface grid generation algorithms are based on a projection strategy, consisting in generating
a grid on the surface parametric plane, and then to project it on the surface. However during
the projection step the grid characteristics, such as point distribution and orthogonality, are
often not correctly transported. In this approach, we solve the structured grid generation
problem in an n-sided region while preserving the non-overlapping property in a numerical
optimization manner.
Within all the surface grid generation approaches, algebraic grid generation is some form of

interpolation from boundary points—di�erent approaches use di�erent kinds of interpolation
[3–5]. Overlapping may, however, happen on some portions of algebraically generated grids,
which must be corrected in order for the mesh to be usable for almost any application.
Also, error may be generated when converting generic boundary curves into curves with a
speci�ed representation. Grid generation is actually a boundary-value problem, so grids can be
generated from point distribution on boundaries by solving elliptic PDEs in the �eld [6–10].
The smoothness properties and extremum principles of some such PDE systems can serve
to produce smooth grids without boundary overlapping. The most recent work of Arina [11]
overcame the di�culties of point distribution and orthogonality on the mapped a surface by a
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Figure 2. Mapping from the x − y − z space to the � − � domain via the u − v domain (Example I):
(a) a trimmed n-sided surface ST(u; v) in the x−y− z space; (b) the parametric area of ST(u; v) in the
u− v domain; (c) the parametric area of G(�; �) in the �− � domain; (d) the grid in the �− � domain;
(e) the grid in the u− v domain (with overlapping); (f) the grid for the surface ST (with overlapping).

conformal map, preserving angles and scale-length ratios. His method consists of two major
steps: the parameterization of surface by isothermal co-ordinates; the generation of a 2D grid
on the conformal parametric plane and its projection on the surface. All the above approaches,
however, cannot be directly applied to a region with n sides (when n¿4), so the n-sided region
has to be partitioned into several non-overlapping blocks with four sides. For the region with
a complex shape (as shown in Figures 2(a) and 2(b)), generating such partitions is not a
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straightforward work—skeleton structure [12, 13] or background triangulation [14, 15] may be
required to construct. However, their resultant grids are usually unstructured.
In this paper, a novel method is presented for generating structured quadrilateral grids with

no self-overlapping on a trimmed n-sided patch by automatically �tting non-self-overlapping
multi-block planar grids into the parametric region of the given surface. The idea is to �rst
construct an initial structured algebraic grid based on the Gregory patch mapping [16] and then
eliminate any possible self-overlapping on the mesh by performing a functional optimization.
In our approach, a planar Gregory patch G(�; �) is adopted to �t an algebraic grid in the
u− v domain of ST; and since the �− � domain PG of G(�; �) is a regular n-sided polygon,
it is easy to divide PG into n four-sided sub-regions and grid each sub-region automatically
(see Figures 2(c) and 2(d)). The mapping between the � − � domain and the u − v domain
by a Gregory patch nevertheless may generate overlapping (see Figures 2(e) and 2(f)). To
mend that, we develop a functional optimization method to eliminate such overlapping in
the u − v domain; the shapes of grid elements in the u − v space are also adjusted in the
optimization. One question arising naturally is: why not using PDEs for this optimization?
Our answer is that, when enhancing the quality of grids by the PDE methods, the derivatives
such as G�, G�, G��, G��, and G�� are needed; for a Gregory patch (detail in Section 3), it
is hard to give the analytical formulas for these terms, and computing them numerically is
a very time-consuming process. Our method compares favourably to PDEs in this regard, as
only the positions of every grid nodes in the u − v domain are required. Thus, the speed of
our method is faster.
The paper is organized as follows. In Section 3, after giving some necessary de�nitions

and preliminaries for the Gregory patch mapping, we introduce the method to determine
the initial algebraic grid by a planar Gregory patch. We then formulate the self-overlapping
problem in the u − v domain as a singularity problem in the derivatives on the Gregory
patch, in Section 4.1. Based on this formulation, the corresponding objective function of our
optimization is then derived in Section 4.2, with a shape control term also added to the
objective function. The details of the numerical implementation of the optimization are given
in Section 4.3. As our numerical implementation is iterative, to overcome the di�culty of
‘guessing’ a good initial grid, the idea of progressive optimization is introduced in Section
4.4. Finally, some experimental results are shown in Section 5 to demonstrate the power of
our approach, with some conclusion remarks o�ered in the last section.

2. GREGORY PATCH MAPPING

The necessary de�nitions and preliminaries of a Gregory patch are �rst given here.

De�nition 2.1
Let P(u) : 06u61 and Q(v) : 06v61 be two regular curves in �3 with P(0)=Q(0), and
TP(u): 06u61 and TQ(v): 06v61 be two C1 vector functions in �3 satisfying

TP(0)=
dQ(v)
dv

∣∣∣∣
v=0

and TQ(0)=
dP(u)
du

∣∣∣∣
u=0
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Figure 3. De�ne a Gregory corner interpolator.

the Gregory corner interpolator of the four, {P(u), Q(v), TP(u), TQ(v)}, is a surface in �3
(Figure 3) de�ned by

r(u; v)=P(u) + vTP(u) +Q(v) + uTQ(v)− P(0)− vTP(0)− uTQ(0)− uv
vT ′
P(0) + uT

′
Q(0)

u+ v
(1)

The Gregory corner interpolator function r(u; v) agrees with P(u) and Q(v) along the two
sides (i.e. r(u; 0)=P(u) and r(0; v)=Q(v)). Also, its partial derivatives with respect to u and
v agree with TP(u) and TQ(v) along the respective sides

− @r(u; v)
@v

∣∣∣∣
v=0

=TP(u) and
@r(u; v)
@u

∣∣∣∣
u=0

=TQ(v)

since TP(0)=Q′(0) and TQ(0)=P′(0). For an n-sided 3D surface, n such interpolator func-
tions can be de�ned on the n corners; the �nal surface is the weighted sum of the n functions
[17, 18]. The details are de�ned as follows.

De�nition 2.2
The parametric domain of a Gregory patch with n sides is de�ned as a unit length regular
n-gon in the �− � domain.

We name the parametric domain of a Gregory patch G as PG, where all corners Xk
(k=0; 1; : : : ; n − 1) are ordered in the anti-clockwise (as shown in Figure 4). Given a point
X =(�0; �0) inside PG, when computing its 3D position de�ned by a Gregory corner inter-
polator rk(uk ; vk), the parameters (uk ; vk) of the point corresponding to the kth corner Xk
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Figure 4. PG of a Gregory patch with �ve sides.

are de�ned as

(uk ; vk)=
(

dk−1
dk−1 + dk+1

;
dk

dk−2 + dk

)
(2)

where dk represents the perpendicular distance from X to the side XkXk+1. It is easy to �nd
that if (�0; �0) lies on the side XkXk+1, vk =0 since dk =0; if (�0; �0) is on Xk−1Xk , uk =0
since dk−1 = 0; when (�0; �0) and Xk+1 coincides, we have uk =1 by Equation (2); and when
(�0; �0) and Xk−1 coincides, we have vk =1.

De�nition 2.3
If C0(u), C1(u); : : : ; Cn−1(u) are n regular 3D curves that form a closed loop in 3D space, that
is Ck(1)=C(k+1) mod n(0) (k=0; 1; : : : ; n−1), and TC0 (u), TC1 (u); : : : ; TCn−1 (u) are n continuous
3D vector functions de�ned on the Ck(u)s, respectively, the Gregory patch of Ck(u)s and
TCk (u)s is de�ned as a mapping from PG to �3 (Figure 5)

G(X )=
n−1∑
k=0
wk(X )rk(uk(X ); vk(X )) (3)

where

wk(X )=

∏
j �=k−1; k

d2j

n−1∑
l=0

∏
j �=l−1; l

d2j
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Figure 5. De�ne a Gregory patch.

and rk(uk ; vk) represents the Gregory corner interpolator function for the kth
corner of the four items {Ck(u), �Ck(v), TCk (u), �TCk (v)}, �Ck(u)=Ck(1 − u), and �TCk (u)=
TCk (1− u).
Note that wk(X ) is unity at the vertex Xk and is zero on those edges of the n-gon not incident

with Xk . Thus, it can be veri�ed that the Gregory patch G(X ) is boundary conforming. That
is, if an X is on the boundary of PG, then G(X ) must be on one of the Ck(u)s, and conversely,
for any point p∈�3 on any Ck(u), there must be an X on the boundary of PG such that
p=G(X ). If the n boundary curves of a Gregory patch G(X ) all lie in a common plane,
obviously G(X ) also lies in that plane, i.e. it is a planar Gregory patch. Next, we elaborate
on how the Gregory patch mapping can be utilized to mesh an n-side trimmed parametric
surface patch.

3. ALGEBRAIC GRID GENERATION BASED ON GREGORY MAPPING

Similar to other algebraic grid generation methods, the algebraic grid construction in our
approach also consists of three steps: (1) forward mapping; (2) grid generation; and (3)
inverse mapping. The forward mapping is the mapping of the 3D physical surface ST to
its underlying parametric area PST . By �tting a planar Gregory patch G into PST , PST of
the surface ST is further mapped into the parametric n-gon PG of G. In this planar Gre-
gory patch G, all the Ck(u)s and TCk (u)s are determined by the 2D boundary curves of
PST in the parametric domain instead of the 3D boundary curves of ST. Grids will be gen-
erated in PG and then mapped back into �3, generating a structured grid system
of ST.
In the �−� domain of G, the co-ordinates of parametric n-gon PG’s corners are de�ned by

Xk =
(
cos

2k�
n
; sin

2k�
n

)
(4)
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Figure 6. Multi-block grids generation in the �− � domain in PG .

where n is the number of corners, and k=0; : : : ; n − 1; so the position of middle points on
the n boundary sides can be computed by

Ek =
(
1
2

(
cos

2k�
n
+ cos

2(k + 1)�
n

)
;
1
2

(
sin
2k�
n
+ sin

2(k + 1)�
n

))
(5)

By the Xks, Eks, and the origin o, the n-gon PG is divided into n blocks. When establishing
the M ×N grid in the kth sub-domain of PG, the co-ordinate of every grid node (�ki;j ; �

k
i;j) is

determined by (as illustrated in Figure 6)

�ki;j=
(
1− i

M

)[(
1− j

N

)
�(XK) +

j
N
�(EK−1)

]
+
i
M

[(
1− j

N

)
�(EK) +

j
N
�(o)

]

�ki;j=
(
1− i

M

)[(
1− j

N

)
�(XK) +

j
N
�(EK−1)

]
+
i
M

[(
1− j

N

)
�(EK) +

j
N
�(o)

] (6)

where �(· · ·) and �(· · ·) represent the � and � co-ordinates of a point in the �−� plane. In our
approach, the n sub-domains are meshed with the same number of M and N , so the boundary
nodes of adjacent sub-domains are coincident. To bene�t the later grid optimization algorithm,
we store the topological structure of the �nal grid MG by a pair of complex (VG; KG), where
VG is the set of grid nodes (the coincident vertices can be stored only once in VG), and KG
is a simplex complex specifying the connectivity of the grid simplices (the vertex–face and
vertex–vertex adjacency information). Therefore, every node lying on the boundary of PG has
two incident faces, and the node coinciding with o has n incident faces, while all other inner
nodes have four incident faces.
After the grid MG is constructed in PG, the co-ordinates of grid nodes are mapped backwards

into �3 by the algebraic equation of G and ST. However, when �tting a planar Gregory patch
G into the parametric domain PST of ST in the u− v plane, only the boundary curves −Ck(u)s
are given by PST . To determine the algebraic equation of G (Equation (3)), the TCk (u)s are

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:961–982



NON-SELF-OVERLAPPING STRUCTURED GRID GENERATION 969

also needed. Here, a linear blending function is chosen. By the compatibility conditions at
corners given in De�nition 2.1, we have

TCi(0)=
d �Ci−1(u)
du

∣∣∣∣∣
u=0

= − dCi−1(u)
du

∣∣∣∣
u=1

and TCi(1)=
dCi+1(u)
du

∣∣∣∣
u=0

the function of TCi(u) is then given as

TCi(u)= (1− u)TCi(0) + uTCi(1) (7)

Now, the �nal co-ordinates of grid nodes on the physical trimmed space can be expressed in
the following form:

STm = S(u(G(�m; �m)); v(G(�m; �m)))

where the functions u(· · ·) and v(· · ·) represent the u and v co-ordinates of a point on the
Gregory patch.
As already exempli�ed in Figure 2, however, when the boundary of PST is complicated

and convoluted, self-overlapping may occur in the u − v plane by the planar Gregory patch
mapping, which leads to a self-intersecting grid on ST. In the following section, we introduce
an iterative functional minimization method for the purpose of eliminating or reducing the
self-overlapping in the u− v domain.

4. GRID OPTIMIZATION

Once an initial structured mesh MG is generated on PST by means of Gregory patch mapping,
we next proceed to eliminate any possible self-overlapping in the mesh. This is achieved
by �rst modelling this elimination process as a functional minimization problem and then
introducing the formulas to optimize the derived objective function. To avoid ‘guessing’ a
good initial value in the iterative optimization process, a progressive optimization algorithm
is also proposed.

4.1. Non-self-overlapping property

First, it is necessary to give a formal mathematical characterization of self-overlapping. Let
us add a virtual axis w perpendicular to the u−v plane as w= u× v. A Gregory patch G(�; �)
now is a planar region embedded in the u× v×w space, denoted as G(�; �)= [U (�; �) V (�; �)
W (�; �)]T, where U (�; �), V (�; �), and W (�; �) are the components of G(�; �) on the u, v,
and w axis, respectively (note that W (�; �) is a constant zero). We de�ne the unit ‘normal
vector’ at any point (�0; �0) on the patch G(�; �) as

N (�0; �0)=
G�×G�
‖G�×G�‖

∣∣∣∣
(�0 ;�0)

A point (�0; �0) is said to be singular if its corresponding ‖G�×G�‖ is a zero vector.
The lemma below is important as it stipulates the condition for guaranteeing the non-self-
overlapping property.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:961–982
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Lemma 4.1
The mapping G(�; �)= [U (�; �) V (�; �) W (�; �)]T has no self-overlapping if and only if there
is no any singular point in the n-gon PG.

Proof
Let us argument the G(�; �) by G∗(�; �)= [U ∗(�; �) V ∗(�; �) W ∗(�; �)]T with U ∗(�; �)=
U (�; �), V ∗(�; �)=V (�; �), and W ∗(�; �)= a�+b� for some real number a and b. By properly
choosing a and b, one can enforce G∗(�; �) to have non-zero length normal vector everywhere,
thus it is a smooth regular surface in the u× v×w space. Suppose �rst that G(�; �) is self-
overlapped. This means that there exist two distinct pairs (�0; �0)∈PG and (�1; �1)∈PG, such
that (U ∗(�0; �0); V ∗(�0; �0))= (U ∗(�1; �1); V ∗(�1; �1)). By properly selecting a and b, one can
also ensure that W ∗(�0; �0) �=W ∗(�1; �1). Let us intersect G∗(�; �) with a plane � that is
parallel to the u− w plane and contains the two points

p0 = (U ∗(�0; �0); V ∗(�0; �0); W ∗(�0; �0)) and p1 = (U ∗(�1; �1); V ∗(�1; �1); W ∗(�1; �1))

resulting in a regular curve �. Consider the portion �∗ of � between the two points, since �∗ is
regular and bounded, it must have a u-extreme point p=(U ∗(�∗; �∗); V ∗(�∗; �∗); W ∗(�∗; �∗))
where the normal vector n to the curve is parallel to the u-axis, as shown in Figure 7(a).
Since the projection of the normal N to the surface X ∗(�; �) at point p in plane � can be
easily seen to identify with n, we have N · w=0. This translates to

U ∗
� (�

∗; �∗)V ∗
� (�

∗; �∗)=U ∗
� (�

∗; �∗)V ∗
� (�

∗; �∗)

i.e. U�(�∗; �∗)V�(�∗; �∗)=U�(�∗; �∗)V�(�∗; �∗). This means (�∗; �∗) is a singular point of
G(�; �).
Conversely, let (�∗; �∗) be a singular point of G(�; �); hence, U�(�∗; �∗)V�(�∗; �∗)=

U�(�∗; �∗)V�(�∗; �∗). Consequently, the normal N to the surface G∗(�; �) at (�∗; �∗) is perpen-
dicular to the w-axis. Without loss of generality, we can assume N is parallel to the u-axis.
Intersecting G∗(�; �) with the plane v=V ∗(�∗; �∗), we obtain a regular curve �. As p∗=
(U ∗(�∗; �∗); V ∗(�∗; �∗); W ∗(�∗; �∗)) is a local u-extreme point on this curve, one can �nd a
real number �¿0 such that the vertical line u=U ∗(�∗; �∗) − � intersects � at least twice

u

v

w ),(ξ ηG ),(ξ ηG

p0
p0

p1

p1

Π

p
n

u

v

w

),( ***  Vv =

N

δ
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 −= ),( ***

*
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ξ η

ξ η

(a) (b)

Figure 7. Proof of Lemma 4.1.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:961–982



NON-SELF-OVERLAPPING STRUCTURED GRID GENERATION 971

(assuming p∗ is a u-maximum point). Let

p0 = (U ∗(�0; �0); V ∗(�0; �0); W ∗(�0; �0)) and p1 = (U ∗(�1; �1); V ∗(�1; �1); W ∗(�1; �1))

be two such intersection points for some (�0; �0) �=(�1; �1), as shown in Figure 7(b). Ob-
viously, we have (U ∗(�0; �0); V ∗(�0; �0))= (U ∗(�1; �1); V ∗(�1; �1)). Since (U (�; �); V (�; �))=
U ∗(�; �); V ∗(�; �), we conclude that G(�; �) maps two distinct points in the �− � domain to
a same point in the region PG. This completes the proof.

Based on the above lemma, the following useful proposition is in order.

Proposition 4.1
If the normal at every point to the Gregory patch G(�; �) has the same sign in w, then G(�; �)
has no self-overlapping.

Without loss of generality, we can assume that the sign in w of the normal vectors of a
non-self-overlapping mapping G(�; �) is always positive.

4.2. Objective function of the optimization

To facilitate the discussion of the objective function, we use the following terms for self-
overlapping.

De�nition 4.1
A point (�d; �d) is called a shadow point of G(�; �) if the normal at G(�d; �d) is along the
negative w-axis.

De�nition 4.2
The set Rd of all the shadow points of G(�; �) is de�ned as the shadow region of G(�; �).

From the above analysis, we �nd that the non-self-overlapping term in the objective function
should be a function indicating the area of the shadow region of G(�; �). During the algebraic
grid generation, the four nodes in every facet are sorted in the counter-clockwise order as
(uj−1; vj−1), (uj; vj), (uj+1; vj+1), and (uj+2; vj+2). Thus, the area of facet i in MG can be
computed by

Ai = 1
2[(uj − uj+1)(vj + vj+1) + (uj+1 − uj+2)(vj+1 + vj+2)

+(uj+2 − uj−1)(vj+2 + vj−1) + (uj−1 − uj)(vj−1 + vj)] (8)

When Ai is negative, all the points in facet i are shadow points. Rather than simply adding
all the negative Ais and taking the sum as the minimization objective function, we adopt an
exponential function de�ned as

J1 =
F−1∑
i=0
e−aAi (9)

where Ai is the area of facet i in the mesh, F is the total number of facets in the mesh,
and a=1=max{|Ai|}. The �gure of the function f(t)= e−at is shown below with a=2 (see
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Figure 8. Shape of function f(t)= e−at with a=2.

Figure 8). The selection of this function over simple summation is motivated by consider-
ations: (1) this function usually converges better than the simple linear summation in the
iterative minimization process, and (2) it also tends to compute a global minimization. Why
not simply applying a spring model (i.e. f(t)= 1

2at
2) as the format of our objective func-

tion? It is because that we want the �rst term J1 e�ecting on the grids only when having
some negative Ais. Thus, the ideal format should have f(t) ≈ 0 when t¿0. Also, the func-
tion f(t) is expected to be C1 continuous since our objective function will be minimized
by a gradient method. The exponential function satis�es these factors but a spring model
does not.
To achieve a smooth grid with good facet shape, Laplacian smoothing is usually applied

on structured grids, which arises from solving a pair of partial di�erential equations [19]:
u�� + u��=0 and v�� + v��=0. In practice, node positions are the average of points of its
neighbouring nodes in Laplacian smoothing. Similarly, we add the following smoothing term
into our objective function:

J2 =
E−1∑
j=0

∣∣∣∣∣
∣∣∣∣∣ �vj − 1L ∑

m∈j∗
�vm

∣∣∣∣∣
∣∣∣∣∣
2

(10)

where j∗ represents an index complex of the neighbour nodes of the inner node �vj=(uj; vj)
in MG, L is the element number of j∗, and E is the number of inner nodes in the mesh. The
formula of J2 can be rewritten as

J2 =
E−1∑
j=0



(
uj − 1L

∑
m∈j∗

um

)2
+

(
vj − 1L

∑
m∈j∗

vm

)2 (11)
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By summing together the non-self-overlapping term and the smoothing term, the �nal ob-
jective function is given as

J =
F−1∑
i=0
e−aAi +

1
�J 2

E−1∑
j=0



(
uj − 1L

∑
m∈j∗

um

)2
+

(
vj − 1L

∑
m∈j∗

vm

)2 (12)

where �J 2 is the initial value of J2 before the optimization. This factor is utilized to balance
the relative importance of the non-self-overlapping term and the smoothing term so that J1
leads the nodes’ movement when self-overlapping occurs, and J2 directs the nodes to archive
better grid shape when J1 → 0.

4.3. Numerical implementation

During the process of optimization, we move the inner nodes of MG in the u − v plane to
achieve the functional optimum (minimum). Therefore, the u and v components of all the
inner nodes of MG form the solution vector �. The conjugate gradient method [20] is applied
to obtain the functional optimum, where the explicit form of gradient at every inner node to
the objective function is desired. For an inner node (uj; vj), from Equation (8), we have

@Ai
@uj

=
1
2
(vj+1 − vj−1) and

@Ai
@vj

=
1
2
(uj−1 − uj+1)

so the gradient direction of (uj; vj) with respect to the non-self-overlapping term J1 in the
objective function is



@J1
@uj

@J1
@vj


 =



N−1∑
k=0
(−ae−aAk )@Ak

@uj

N−1∑
k=0
(−ae−aAk )@Ak

@vj


 =



1
2

N−1∑
k=0
−ae−aAk (vj+1 − vj−1)

1
2

N−1∑
k=0
−ae−aAk (uj−1 − uj+1)


 (13)

where Ak is the area of the kth incident facet of (uj; vj), and N is the number of incident
facets around (uj; vj). By Equation (11), the gradient of (uj; vj) with respect to the smoothing
term J2 in the objective function is determined as



@J2
@uj

@J2
@vj


 =



2

(
uj − 1L

∑
m∈j∗

um

)
− ∑

m∈j∗
2
Lm

(
um − 1

Lm

∑
n∈m∗

un

)

2

(
vj − 1L

∑
m∈j∗

vm

)
− ∑
m∈j∗

2
Lm

(
vm − 1

Lm

∑
n∈m∗

vn

)

 (14)
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(a) (b)

Figure 9. Example II—grid before vs after optimization: (a) before optimization; (b) after optimization.

where m∗ represents an index complex of the neighbouring nodes of (uj; vj), and Lm is the
element number of m∗. Therefore, in summary, we have



@J
@uj

@J
@vj


 =




1
2

N−1∑
k=0
−ae−aAk (vj+1 − vj−1)

+
2
�J 2

[(
uj − 1L

∑
m∈j∗

um

)
− ∑
m∈j∗

1
Lm

(
um − 1

Lm

∑
n∈m∗

un

)]

1
2

N−1∑
k=0
−ae−aAk (uj−1 − uj+1)

+
2
�J 2

[(
vj − 1L

∑
m∈j∗

vm

)
− ∑
m∈j∗

1
Lm

(
vm − 1

Lm

∑
n∈m∗

vn

)]




(15)

Using the above formula, by a conjugate gradient method, we can iteratively determine the
value of components in � that makes the objective function as de�ned in Equation (12)
minimum. Thus, the u and v parameters of every inner node in a non-self-overlapping grid
MG∗

are determined. By the parametric equation of ST, the �nal position of all grid nodes
can be computed by their u, v parameters.
Figure 9 shows an example of the grid (in u − v plane) generated before and after the

functional optimization when choosing a 10× 10 grid in each sub-domain. As demonstrated
in the �gure, the self-overlapping is eliminated in the optimized grid.

4.4. Progressive optimization

As our objective function in the functional optimization is concave with respect to its solu-
tion vector � (there can be many local minima), the success of the numerical optimization
algorithm depends critically on the initial position of �. We take the algebraic grid generated
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(a) (b)

Figure 10. Example III—result of progressive optimization: (a) before
optimization; (b) after optimization.

by a Gregory patch in Section 3 as an initial position of the solution vector; it however may
not be a very satisfying one for some strongly concaved boundaries (e.g. the one shown in
Figure 10(a)). ‘Guessing’ a good initial vector is hard. The basic idea we take to overcome
this di�culty is to progressively achieve the optimum by gradually deforming the grid M 0

from a regular n-gon �R into the grid Mf in the region PST bounded by the given curves in
the u− v plane, which we discuss in detail in this section.
The grid M 0 generated in the initial shape, a regular n-gon, by a Gregory patch G0(�; �)

is non-self-overlapping. For any grid node �vj, its co-ordinates determined by the Gregory
patch GT(�; �) on PST in the u − v plane are (uTj ; vTj ), and the co-ordinates determined by
G0(�; �) are (u0j ; v

0
j ). At the beginning of the deformation, the moving direction of �vj is

(duj; dvj)= (uTj − u0j ; vTj − v0j ). When deforming M 0 into Mf by changing a deformation factor
�t (�t ∈ [0; 1]), the position of every grid node �vj is determined by

utj= u
0
j + �t duj

vtj= v
0
j + �t dvj

(16)

During the deformation, we check if self-overlapping occurs; once it is detected, the numerical
optimization method presented in Section 4.3 is applied to current grid M�t to construct a
new grid M�t∗ without or with less self-overlapping. The position of grid node �vj in M�t∗

changes from (utj; v
t
j) to (u

t∗
j ; v

t∗
j ), so we use the following equation to alternate the moving

direction of �vj.

duj=(ut
∗
j − u0j )=�t

dvj=(vt
∗
j − v0j )=�t

(17)

The deformation will then continue along the new directions guided by Equation (16). The
deformation and functional optimization are applied alternatively until the �nal non-self-
overlapping grid Mf is obtained. Since the positions of boundary grid nodes are not adjusted
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(a) (b)

(c) (d)

Figure 11. Example III—progressive results: (a) �t =0:2; (b) �t =0:413; (c) �t =0:709; (d) �t =1:0.

during the optimization, their moving directions do not change during the deformation—so
the result grid Mf of the progressive optimization is still boundary conforming to PST exactly
as the algebraic grid MT generated by the Gregory patch GT(�; �) on PST .
During the deformation, the deformation factor �t increases from zero to one adaptively to

the value increase of the objective function. The overall procedure of progressive optimization
is outlined in pseudo-code in Algorithm ProgressiveOptimization() below. As a demonstration
of the power of this progressive optimization, to Example III (shown in Figure 10), we �rst
tried the pure numerical optimization which though failed to achieve a non-self-overlapping
grid even after iterating 10 000 times; using Algorithm ProgressiveOptimization(), we easily
obtain a �nal result without self-overlapping by applying the numerical optimization only
eight times with summed 479 iterations. The progressive results are shown in Figure 11. The
progressive algorithm does not success in any case, so in step 7 of Algorithm ProgressiveOp-
timization() we detect whether the moving step is less than a threshold. If so, report failure
and stop running the algorithm. However, in all of our testing examples, the algorithm works
well.
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Algorithm ProgressiveOptimization (PST)
Input : A region PST in the u− v parametric space.
Output : The non-self-overlapping grid Mf on PST .
1. Compute the algebraic grid MT on PST , M

T has nT facets;
2. Compute position of every grid node on M 0;
3. Compute the initial moving direction of every grid node by G0(�; �) and GT(�; �);
4. �t ← 0;
5. do{
6. ��← 2(1− �t);
7. When ��¡10−16, report failure and terminate the algorithm;
8. do{
9. ��← ��=2, and �t ← �t +��;
10. Change the position of every grid node

by Equation (16)—obtain the current grid
M�t ;

11. Compute the number n− of facets with
negative area on the current grid M�t ;

12. }while((n−=nT)¿�);
13. Compute the numerical optimum M�t∗ of the current grid M�t ;
14. Use M�t∗ to update the moving direction of every grid node by Equation (17);
15. }while(�t¡1);
16. Mf ← M�t∗;
17. return Mf;
(* in our testing, we choose �=20%)

5. EXPERIMENTAL RESULTS

The proposed mesh algorithm has been implemented using Java language and separately tested
on a PIII 900MHz PC with a basic con�guration and on a PIV 2:6GHz PC with a modernist
con�guration; a number of test cases are tried. Figure 12 gives the non-self-overlapping grid
generation result of the trimmed surface in Example I (initially given in Figure 2); Figure 13
shows the result of the patch in Example II with a mesh denser than the one shown in
Figure 9; and the �nal surface grids in Example III are displayed in Figure 14. Example IV
is a trimmed surface with six sides; its shape in the parametric surface is very convoluted
so that the six-side region cannot be easily divided into two four-side sub-regions by straight
lines since all the pertinent diagonals (shown as dash lines in Figure 15(a)) intersect the
boundaries. As shown in Figure 15(b), the original algebraic grids from the Gregory patch
mapping incurs severe self-overlapping. Using the presented mesh method, the self-overlapping
is successfully eliminated in the �nal optimized grid, as given in Figure 15(c). The �nal
surface grids are shown in Figure 15(d). For a trimmed surface patch with holes, we can �rst
partition its parametric domain into several regions without holes and then apply the proposed
mesh algorithm independently to these regions, e.g. Example V shown in Figure 16. All the
boundary curves in our examples are presented by fourth-order Bezier curves. The control
points of the Bezier boundary curves are listed in Table I.
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(a) (b)

Figure 12. Result of Example I: (a) result grids in u− v space; (b) �nal grids on the trimmed surface.

(a) (b)

Figure 13. Result of Example II: (a) result grids in u− v space; (b) �nal grids on the trimmed surface.

(a) (b)

Figure 14. Result of Example III: (a) result grids in u−v space; (b) �nal grids on the trimmed surface.
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(a) (b)

(c) (d)

Figure 15. Example IV—a patch with six sides: (a) the parametric area in u− v domain; (b) algebraic
grids in u− v domain; (c) grids after progressive optimization; (d) grids on the trimmed surface.

The computer running times of the given examples are tabulated in Table II. Usually,
several minutes are needed. If the standard tools in commercial software are conducted to
generate the grids on trimmed n-sided parametric patches, manual partitioning is required and
it is a trial and error process—so it usually takes several hours of a human working. Also, it is
hard to control the time cost. In some cases, especially the cases with convex boundaries, the
traditional process can generate a good result very fast. However, if one is unluckily dealing
with a much concaved parametric region, he may spend a lot of time on it. It is believed
that with the increasing processing power available on the computer and with more e�cient
optimization algorithms, the running time can be shortened signi�cantly. Consider about the
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(a) (b)

(c) (d)

Figure 16. Example V—complex region with multiple patches: (a) given region in u − v
space; (b) given region is subdivided into two patches; (c) �nal grids in u − v space;

(d) �nal grids on the trimmed surface.

di�erences of computing time on PCs with basic and modernist con�gurations, the computing
time of all the examples on PIV 2:6 GHz is almost one third of the time on PIII 900. On
the PIV 2:6 GHz, it has already achieved an acceptable speed in the work of computer-aided
engineering.

6. CONCLUSION

In this paper, we present a method for automatically constructing a structured grid system
in an n-sided planar region bounded by parametric boundary curves of any form with only
C1 continuity, using a planar Gregory patch. This averts the need of manually partitioning
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Table I. Control points of boundary curves.

Example Curve no. Control points

I 1 (0.86,0.90), (1.0,0.65), (0.67,0.40), (0.41,0.0)
2 (0.41,0.0), (0.30,0.08), (0.26,0.01), (0.0,0.21)
3 (0.0,0.21), (0.53,0.31), (0.56,0.42), (0.53,0.52)
4 (0.53,0.52), (0.73,0.61), (0.60,0.79), (0.27,0.82)
5 (0.27,0.82), (0.34,0.96), (0.63,1.0), (0.86,0.90)

II 1 (0.93,0.46), (0.88,0.33), (0.89,0.14), (0.65, 0.01)
2 (0.65,0.01), (0.38,0.0), (0.42,0.20), (0.10,0.20)
3 (0.10,0.20), (0.72,0.40), (0.46,0.57), (0.0,0.44)
4 (0.0,0.44), (0.26,0.87), (0.46,0.94), (1.0,0.99)
5 (1.0,0.99), (0.32,0.54), (0.66,0.29), (0.93,0.46)

III 1 (1.0,0.36), (0.50,0.37), (0.26,0.18), (0.92,0.10)
2 (0.92,0.10), (0.46,0.0), (0.21,0.10), (0.0,0.30)
3 (0.0,0.30), (0.94,0.24), (0.67,1.0), (0.15,0.34)
4 (0.15,0.34), (0.12,0.44), (0.15,0.69), (0.31,0.79)
5 (0.31,0.79), (0.70,0.70), (0.82,0.59), (1.0,0.36)

IV 1 (0.62,0.40), (0.74,0.38), (1.0,0.31), (0.90,0.10)
2 (0.90,0.10), (0.73,0.21), (0.58,0.23), (0.27,0.0)
3 (0.27,0.0), (0.37,0.29), (0.28,0.65), (0.0,0.64)
4 (0.0,0.64), (0.12,0.86), (0.37,1.0), (0.46,0.75)
5 (0.46,0.75), (0.62,0.74), (0.77,0.66), (0.84,0.53)
6 (0.84,0.53), (0.71,0.52), (0.59,0.49), (0.62,0.40)

Table II. Time cost of examples.

Result Optimization Side Time cost on Time cost on
Example �gures type number* PIII 900 MHz PIV 2:6 GHz

I 12 Progressive 5 4 min 30 s 1 min 41 s
II 9, 13 Pure numerical 5 2 min 11 s 49 s
III 10, 11, 14 Progressive 5 12 min 7 s 4 min 13 s
IV 15 Progressive 6 15 min 13 s 5 min 19 s
V 16 Progressive 2× 5 4 min 9 s 1 min 33 s
∗The grid size in each block is 20× 20.

the n-sided region into four-sided sub-regions, which is a popular solution by most commer-
cial meshing software. However, the algebraic grid thus generated may have self-overlapping
which makes the mesh useless in most of engineering and scienti�c applications. A functional
optimization method is then presented to eliminate such self-overlapping in the grid. Unlike
PDE methods, the derivatives of a Gregory patch, which are very di�cult to compute, are
not required in our method. Thus, the speed of the optimization process of our approach is
relatively fast. To resolve the di�culty of guessing good initial positions of every grid node
for the conjugate gradient method, a progressive optimization algorithm is introduced, which
has been shown to be very e�ective in a variety of practical examples. In summary, our
approach provides a promising meshing tool in engineering.
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Some new ideas about introducing additional terms to the Gregory de�nition have been
proposed recently [18], which will allow extra controlling to the patch. One possible extension
of our current work is to see if an algebraic mapping which guarantees non-self-overlapping
can be determined by adjusting those additional terms of a Gregory patch. The process may
also be a functional optimization approach like what is described in this paper. Or we can
alternate the 3D vector functions along the boundaries so that the positions of inner nodes
are adaptively modi�ed to achieve a non-self-overlapping grid.
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